Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Front Cell Neurosci ; 16: 1108593, 2022.
Article in English | MEDLINE | ID: covidwho-2199041

ABSTRACT

[This corrects the article DOI: 10.3389/fncel.2022.954912.].

2.
Int J Biol Sci ; 18(13): 4901-4913, 2022.
Article in English | MEDLINE | ID: covidwho-1964519

ABSTRACT

Background: In 2019, the coronavirus pandemic emerged, resulting in the highest mortality and morbidity rate globally. It has a prevailing transmission rate and continues to be a global burden. There is a paucity of data regarding the role of long non-coding RNAs (lncRNAs) in COVID-19. Therefore, the current study aimed to investigate lncRNAs, particularly NEAT1 and TUG1, and their association with IL-6, CCL2, and TNF-α in COVID-19 patients with moderate and severe disease. Methods: The study was conducted on 80 COVID-19 patients (35 with severe and 45 with moderate infection) and 40 control subjects. Complete blood count (CBC), D-dimer assay, serum ferritin, and CRP were assayed. qRT-PCR was used to measure RNAs and lncRNAs. Results: NEAT1 and TUG1 expression levels were higher in COVID-19 patients compared with controls (P<0.001). Furthermore, CCL2, IL-6, and TNF-α expressions were higher in COVID-19 patients compared to controls (P<0.001). CCL2 and IL-6 expression levels were significantly higher in patients with severe compared to those with moderate COVID-19 infection (P<0.001). IL-6 had the highest accuracy in distinguishing COVID-19 patients (AUC=1, P<0.001 at a cutoff of 0.359), followed by TUG1 (AUC=0.999, P<0.001 at a cutoff of 2.28). NEAT1 and TUG1 had significant correlations with the measured cytokines, and based on the multivariate regression analysis, NEAT1 is the independent predictor for survival in COVID-19 patients (P=0.02). Conclusion: In COVID-19 patients, significant overexpression of NEAT1 and TUG1 was observed, consistent with cytokine storm. TUG1 could be an efficient diagnostic biomarker, whereas NEAT1 was an independent predictor for overall survival.


Subject(s)
COVID-19 , Cytokine Release Syndrome , RNA, Long Noncoding , COVID-19/complications , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Humans , Incidence , Interleukin-6 , RNA, Long Noncoding/genetics , Tumor Necrosis Factor-alpha
3.
Mol Oral Microbiol ; 36(6): 291-294, 2021 12.
Article in English | MEDLINE | ID: covidwho-1398524

ABSTRACT

COVID-19, caused by the SARS-CoV-2 virus, has become a significant global public health problem, with a wide variety of clinical manifestations and disease progression outcomes. LncRNAs are key regulators of the immune response and have been associated with COVID-19 risk infection. Previous studies focused mainly on in-silico analysis of lncRNA expression in the lungs or peripheral blood cells. We evaluated the expression of lncRNAs NEAT1, MALAT1, and MIR3142 in saliva and nasopharyngeal swab from SARS-CoV-2 positive (n = 34) and negative patients (n = 46). A higher expression of the lncRNAs NEAT1 and MALAT1 (p < 0.05) were found in positive samples. NEAT1 had a higher expression mainly in saliva samples (p < 0.001), and MALAT1 was upregulated in nasopharyngeal samples (p < 0.05). Area under the ROC curve for NEAT1 in saliva was 0.8067. This study was the first to investigate the expression of lncRNAs in saliva and nasopharyngeal samples of COVID-19 patients, which gives new insights into the initial response to infection and infectivity and may provide new biomarkers for severity and targets for therapy.


Subject(s)
COVID-19 , RNA, Long Noncoding/genetics , Saliva , Humans , Nasopharynx/chemistry , RNA, Long Noncoding/analysis , SARS-CoV-2 , Saliva/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL